Biorefinery Optimization Tool — Development and **Validation**

John L. Jechura

National Renewable Energy Laboratory • Golden, CO

John J. Marano

University of Pittsburgh • Pittsburgh, PA

1. Initial Premise

- Biorefinery concept proposed as means of improving economics of next-generation technologies
- Use various biomass feedstock options
- Produce a mix of fuels, power, and high-value co-products
- Must optimize feedstock and product mix
- Biorefinery similar to petroleum refinery

Objective

Develop Excel-based software to optimize selection of feedstocks, products, and process configurations for conceptual biorefineries

Use VBA Macros and Solver Add-In

2. Modeling Hierarchy Single Multiple

3. Comparison of Approaches

Process Simulation	LP and NLP Simulation		
Model driven	Data driven		
Relies on theories	Relies on mathematics		
Engineering	Economics		
Iterative solution	Equation oriented		
Case studies	True optimization		

4. LP Formulation

LP Tableau

х ₁	x ₂	х ₃	x ₄	х ₅	s ₁	s ₂	RHS
+a	-b	+c		+d			Α
-е	-f		+g	- h	+1		В
+i		- j	+k			-1	С
	+m	+n		-0	-р		Obj.

S, and S, are slack variables RHS, Right Hand Side Obj., Value of objective function

5. Biorefinery Block Flow Diagram

6. Worksheets in BioRefine.xls

7. SBFH — Biomass Feed Handling

Receiving, storage, washing and sizing of biomass feedstocks

8. SPTRa — Biomass Feed Pretreatment

Mild/severe acid hydrolysis pretreatment of washed and sized biomass feedstocks

9. SSAC — Cellulose Saccharification **SFMT** — Sugar Fermentation

SAC

10. SEEP — Co-Product Separation

Recovery and purification of various products from hydrolysis and fermentation

11. SubModel Template

12. SubModel Template

13. Potential BioRefine.xls Studies

- Feedstocks
- Corn Stover
- Poplar
- Co-Products - Ethanol
- Glycerol
- Succinic Acid

- Lactic Acid
- Acetic Acid
- Furfural -HMF

- Power Generation
- CFBC with ST
- GT and ST CC Other Products
- Power
- Waste Heat (steam)
- Boiler Fuel
- Mild and Severe Hydrolysis
- Sugar Fermentation
- Ethanol - Lactic Acid

- 14. Project Status
- Spreadsheet developed to optimize selection of feedstocks, products, and process configurations for conceptual biorefineries
- Prototype delivered
- Further software development
- User interface to improve ease of use
- Automatic Solver setup
- Further verification of assumptions, structure, and data
- Biorefinery scenarios

15. Acknowledgement

Funding provided by the Office of the Biomass Program of the U.S. Department of Energy